

Accelerated Markov Chain Monte Carlo Algorithms on Discrete States Bohan Zhou¹, Shu Liu², Xinzhe Zuo², and Wuchen Li³

 1 UCSB Mathematics. bhzhou@ucsb.edu; 2 UCLA Mathematics. {shuliu,zxz}@math.ucla.edu; ³U of SC Mathematics. wuchen@mailbox.sc.edu.

Overview

- We propose a class of accelerated Markov chain Monte Carlo (aMCMC) algorithms for sampling from discrete-state spaces. This framework is inspired by the Metropolis-Hastings algorithm, the graphical Wasserstein metric, and Nesterov's accelerated gradient method.
- While MH can be viewed as a gradient descent of the KL divergence, our approach introduces a momentum-based acceleration via a damped Hamiltonian system, with user-defined potentials and mobilities.
- The accelerated gradient flow of the relative Fisher information demonstrates (acceleration and accuracy) of the algorithm, without requiring the normalizing constant while preserving positivity of probabilities.

Route Map

Discrete-time	Continuous-time		
$\mathbb{P}(X^{(k+1)} = j \mid X^{(k)} = i) = P_{ij}$	$\mathbb{P}(X(t+h)=j\mid X(t)=i)\approx \delta_{ij}+Q_{ij}h$		
$p^{(k+1)} = p^{(k)}P \qquad \longleftarrow$	$\dot{p}(t) = pQ$		
$p^{(k+1)} = p^{(k)}(I_n + Q\Delta t)$	$\dot{p}(t) = -\nabla_p D_{\varphi}(p \ \pi) \mathbb{K}(p)$		
$p^{(k+1)} = p^{(k)}(I_n + \bar{Q}_{\psi}^r \Delta t) \leftarrow$	$-\begin{bmatrix} \dot{p}(t) \\ \dot{\psi}(t) \end{bmatrix} = \begin{bmatrix} 0 \\ -\gamma(t)\psi(t) \end{bmatrix} + \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \begin{bmatrix} \partial_p \mathcal{H} \\ \partial_\psi \mathcal{H} \end{bmatrix}$		

Table 1: We start with the Markov chain (first row), which can be rewrite as the forward master equation (second row). Using the graphical Wasserstein metric, this equation takes the form of a gradient flow (the third row). Finally, we introduce the damped Hamiltonian dynamics (the last row) originated from Nesterov's accelerated gradient method, along with its corresponding jump process.

Sampling on Discrete-State Spaces

We aim to sample from a target distribution π supported on a given graph by designing a dynamical (or jump) process such that the state variable p(t) (or $p^{(k)}$) converges to π over time.

Input: Initial distribution $\rho^{(0)}$, total particles M, unnormalized target distribution π . **User-specified choices:**

- Baseline transition rate matrix Q that satisfies the detailed balance, e.g., the one constructed by the Metropolis-Hastings (MH) algorithm.
- ii. Activation function $\theta_{ij}(p)$ that induces a graphical metric tensor \mathbb{K}^{\dagger} on the graph; e.g., the logarithmic mean $\theta_{ij}(p) = \frac{\frac{p_i}{\pi_i} - \frac{p_j}{\pi_j}}{\log \frac{p_i}{\pi_i} - \log \frac{p_j}{\pi_i}} = \frac{p_i}{\pi_i} \cdot \frac{1 - \frac{\pi_i}{\pi_j} \frac{p_j}{p_i}}{\log \left(\frac{\pi_j}{\pi_i} \frac{p_i}{p_i}\right)}.$
- iii. Potential function $\mathcal{U}(p)$ in the Hamiltonian $\mathcal{H}(p,\psi) = \frac{1}{2}\psi\mathbb{K}(p)\psi^{\top} + \mathcal{U}(p)$.
- iv. Damping parameter $\gamma(t) > 0$, which may be either time-dependent or constant.

Accelerated MCMC

We select Q^{MH} (specify i.), define $\omega_{ij}=\pi_iQ_{ij}^{\mathrm{MH}}$ and expand the matrix form as

$$\int \frac{\mathrm{d}p_i}{\mathrm{d}t} + \sum_{j \neq i} \omega_{ij} \theta_{ij}(p) (\psi_j - \psi_i) = 0, \tag{0.1a}$$

$$\begin{cases} \frac{\mathrm{d}\psi_i}{\mathrm{d}t} + \gamma(t)\psi_i + \frac{1}{2} \sum_{i \neq i} \omega_{ij} \frac{\partial \theta_{ij}(p)}{\partial p_i} (\psi_i - \psi_j)^2 + \frac{\partial \mathcal{U}(p)}{\partial p_i} = 0, \end{cases}$$
(0.1b)

The jump process for (0.1a) can be constructed as

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\left[\sum_{j\neq i} \frac{\omega_{ij}\theta_{ij}(p)(\psi_i - \psi_j)_-}{p_i}\right] p_i + \sum_{j\neq i} \frac{\omega_{ji}\theta_{ji}(p)(\psi_i - \psi_j)_+}{p_j} p_j,$$

which leads to the form of forward master equation $\frac{\mathrm{d}}{\mathrm{d}t}p=p\bar{Q}^r_\psi$ and requires positivity.

$\theta_{ij}(p)$ (specify ii.)	potential $\mathcal{U}(p)$ (specify iii.)	${\sf w/o}~Z$	strict positivity
1	$\frac{1}{2} \sum_{i=1}^{n} \frac{(p_i - \pi_i)^2}{\pi_i}$	No	No
log-mean	$\sum_{i=1}^{n} p_i \log \frac{p_i}{\pi_i}.$	Yes	No
log-mean	$\frac{1}{4} \sum_{i,j=1}^{n} \omega_{ij} \left(\log \frac{\pi_j}{\pi_i} \frac{p_i}{p_j} \right) \left(\frac{p_i}{\pi_i} - \frac{p_j}{\pi_j} \right)$	Yes	Yes
$ heta_{ij}$	$\frac{1}{4} \sum_{i,j=1}^{n} \omega_{ij} \theta_{ij} \left(\log \frac{\pi_j}{\pi_i} \frac{p_i}{p_j} \right)^2 $	Yes	Yes

Table 2: Examples of aMCMC dynamics. First row is Chi-squared method; second row is KL method; third row is log-Fisher method; fourth row is con-Fisher method.

Analysis of aMCMC

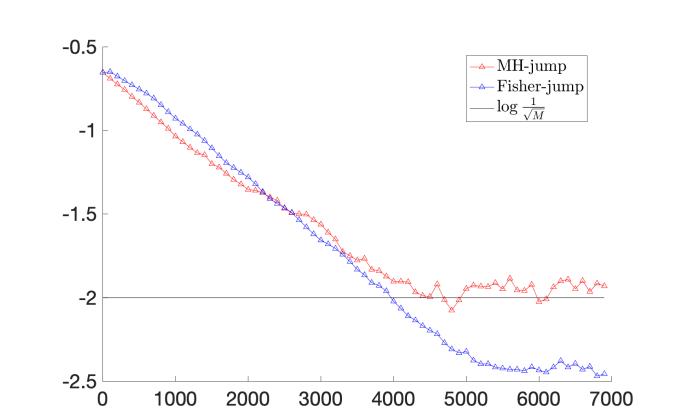
- Convergence: If π is the unique critical point to $\mathcal{U}(p)$, then p(t) converges to π .
- Normalizing constant Z of target distribution π : KL and log-Fisher do not depend on Z, provided that damping parameter $\gamma(t)$ does not depend on Z.
- Positivity of state variables: A large class of potential functions (include log-**Fisher** and con-Fisher) ensure there is a positive lower bound ε such that $p_i(t) > 0$ ε for any i and any t.
- Damping parameter and acceleration
 - Chi-squared: Let α_* be the largest negative eigenvalue of Q. If $|\alpha_*| < 1$, then there exists damping parameter $\gamma(t) = d \in [2\sqrt{|\alpha_*|}, |\alpha_*| + 1)$ (specify iv.), such that the largest negative eigenvalue μ_* of L satisfies $\mu_* < \alpha_*$.
 - Log-Fisher: the damping parameter $\gamma(t)$ in the asymptotical limit can be suggested by con-Fisher, via computing a Rayleigh quotient problem.

Computational Remark

- The staggered scheme with splitting method is employed.
- MH steps are triggered as a restart mechanism to restore strict positivity when it is compromised by accumulated sampling errors.
- Acceleration and Accuracy via Chi-squared and log-Fisher method are observed in numerical examples, comparing with MH method.

Sampling on hypercube and lattices

We seek to sampling $\pi = \frac{1}{Z}[16, 1, \dots, 1, \dots, 1, 16]$ on hypercube of 64 nodes,



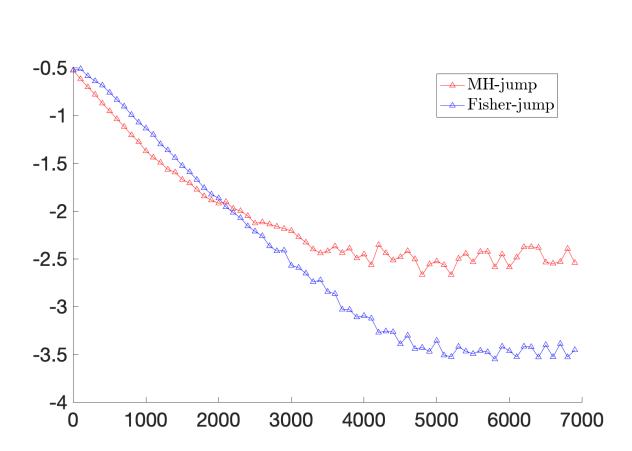
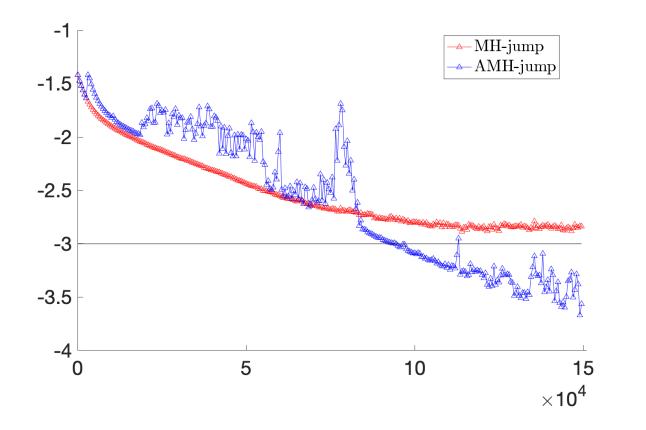


Figure 1: Sampling on a hypercube graph of 64 nodes via log-Fisher method. x-axes are in iterations with step size $\Delta t = 0.01$. The left figure shows the approximation error $\log_{10} \|p(t) - \pi\|_2$ w.r.t π . The right figure shows the approximation error $\log_{10} |\sum_{i=1}^{n} p_i(t) \log \frac{p_i(t)}{Z\pi} - (-\log Z)|$ w.r.t Z.

and sampling the mixture of two Gaussians on a lattice of 625 nodes:

$$\pi(x) = \frac{1}{Z} \left[\exp\left(-10\|x - x_1\|_2^2\right) + \exp\left(-40\|x - x_2\|_2^2\right) \right]$$



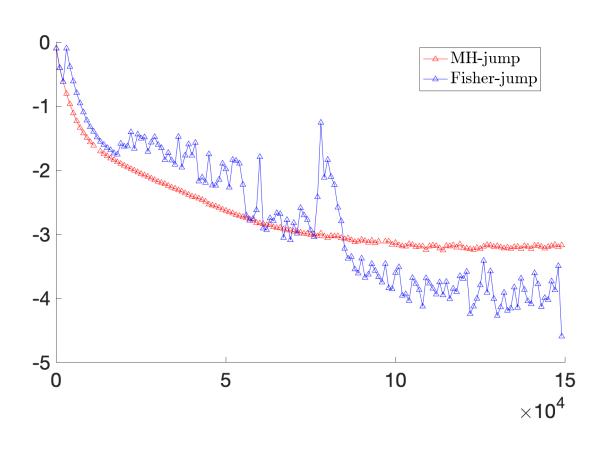


Figure 2: Sampling on a 25×25 lattice graph via log-Fisher. x-axes are in iterations. The left figure shows the approximation error $\log_{10} \|p(t) - \pi\|_2$ w.r.t π . The right figure shows the approximation error $\log_{10} |\sum_{i=1}^n p_i(t) \log \frac{p_i(t)}{Z\pi} - (-\log Z)|$ w.r.t Z. The jump process via log-Fisher achieves to a higher accuracy when that via MH is approaching to $\mathcal{O}(\frac{1}{\sqrt{M}})$.

References

- [1] S. Chen, Q. Li, O. Tse, and S. J. Wright. Accelerating optimization over the space of probability measures. Journal of Machine Learning Research, 26(31):1-40, 2025.
- [2] S.-N. Chow, W. Huang, Y. Li, and H. Zhou. Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph. Archive for Rational Mechanics and Analysis, 203(3):969–1008, 2012.
- [3] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM journal on mathematical analysis, 29(1):1-17, 1998.
- [4] J. Maas. Gradient flows of the entropy for finite Markov chains. Journal of Functional Analysis, 261(8):2250-
- [5] A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. *Nonlinearity*, 24(4):1329–1346, 2011.
- [6] Y. E. Nesterov. A method of solving a convex programming problem with convergence rate $\mathcal{O}(\frac{1}{l_2})$. In Doklady Akademii Nauk, volume 269, pages 543-547. Russian Academy of Sciences, 1983.
- [7] Y. Wang and W. Li. Accelerated information gradient flow. Journal of Scientific Computing, 90:1-47, 2022.

This project has received funding from AFOSR YIP award No. FA9550-23-1-0087, NSF RTG: 2038080 and FRG: 2245097. All authors would like to thank the support of the AMS MRC conference: Ricci Curvatures of Graphs and Applications to Data Science in 2023.